Cyber Security Authentications

Cyber Security Authentications
Cyber Security Authentications

In this article we will talk about Cyber Security Authentications, and in previous article we already discussed about 
Cisco Digital Network Architecture (Cisco DNA).

When conducting business long distance, you must know who is at the other end of the phone, email, or fax. The same is true of VPN networks. The device on the other end of the VPN tunnel must be authenticated before the communication path is considered secure. The figure highlights the two peer authentication methods.

PSK Authentications

At the local device, the authentication key and the identity information are sent through a hash algorithm to form the hash for the local peer (Hash_L). One-way authentication is established by sending Hash_L to the remote device. If the remote device can independently create the same hash, the local device is authenticated. After the remote device authenticates the local device, the authentication process begins in the opposite direction, and all steps are repeated from the remote device to the local device.

RSA Authentications

At the local device, the authentication key and identity information are sent through the hash algorithm to form the hash for the local peer (Hash_L). Then the Hash_L is encrypted using the local device’s private encryption key. This creates a digital signature. The digital signature and a digital certificate are forwarded to the remote device. The public encryption key for decrypting the signature is included in the digital certificate. The remote device verifies the digital signature by decrypting it using the public encryption key. The result is Hash_L. Next, the remote device independently creates Hash_L from stored information. If the calculated Hash_L equals the decrypted Hash_L, the local device is authenticated. After the remote device authenticates the local device, the authentication process begins in the opposite direction and all steps are repeated from the remote device to the local device.

Secure Key Exchange with Diffie-Hellman

Encryption algorithms require a symmetric, shared secret key to perform encryption and decryption. How do the encrypting and decrypting devices get the shared secret key? The easiest key exchange method is to use a public key exchange method, such as Diffie-Hellman (DH).

DH provides a way for two peers to establish a shared secret key that only they know, even though they are communicating over an insecure channel. Variations of the DH key exchange are specified as DH groups:

  • DH groups 1, 2, and 5 should no longer be used. These groups support a key size of 768 bits, 1024 bits, and 1536 bits, respectively.
  • DH groups 14, 15, and 16 use larger key sizes with 2048 bits, 3072 bits, and 4096 bits, respectively, and are recommended for use until 2030.
  • DH groups 19, 20, 21 and 24 with respective key sizes of 256 bits, 384 bits, 521 bits, and 2048 bits support Elliptical Curve Cryptography (ECC), which reduces the time needed to generate keys. DH group 24 is the preferred next generation encryption.

The DH group you choose must be strong enough, or have enough bits, to protect the IPsec keys during negotiation. For example, DH group 1 is strong enough to support DES and 3DES encryption, but not AES. For example, if the encryption or authentication algorithms use a 128-bit key, use group 14, 19, 20 or 24. However, if the encryption or authentication algorithms use a 256-bit key or higher, use group 21 or 24.

1 Trackback / Pingback

  1. Navigating the Linux Desktop – CLI - Cisco Education

Leave a Reply

Your email address will not be published.


*